4.1 Exponential Functions

Warm-Up Write all you know about the following terms. Domain Intercept **Increasing Function** Range Slope **Decreasing Function**

Main Topic

Exponential Functions and Their Graphs

List at least 3 acts of kindness that you can share with your community.

Two individuals are planning to start the campaign.

Fill out the table below.

No. of Days	1	2	3	4	5	6	7	Х
No. of								
Individuals								
Exponential								
Expression								

- What is the expected number of individuals participating in the campaign on the 4th day?
- O How many days will it take for every individual in your city to participate in the campaign?

Properties of Exponential Functions

- Graph $f(x) = 2^x$.
- o Identify the following features of the function.
 - Domain:
 - Range:
 - Asymptote:
 - x-intercept:
 - y-intercept:
 - Left End Behavior:
 - Right End Behavior:
 - Increasing or Decreasing:

Asymptote

An **asymptote** is a straight line where a graph is trying to approach but never touches it. For $f(x) = 2^{-x} - 5$, the asymptote is -5.

- o Graph $f(x) = 2^{-x} + 3$.
- Identify the following features of the function.
 - Domain:
 - Range:
 - Asymptote:
 - x-intercept:
 - y-intercept:
 - Left End Behavior:
 - Right End Behavior:
 - Increasing or Decreasing:

Complete the tables with necessary information.

Domain and Range		x and y intercepts
Asymptote	$f(x) = -2^x + 3$	Left and Right End Behavior

Quick Math

What is the x-intercept and y-intercept of $f(x) = 5 - 4^x$?

Transformations of Functions

Write your observations when $f(x) = 2^x$ is changed to

$$f(x) = 2^x - 5$$

$$f(x) = 2^{-x} + 5$$

$$f(x) = -2^x + 5$$

$$f(x) = 2^{x} - 5$$
 $f(x) = 2^{-x} + 5$ $f(x) = -2^{x} + 5$ $f(x) = 2^{x-4} + 5$

Fill in the blank

Word Bank: Translates, Reflects, Horizontal, Vertical, Left, Right, Down, Up

$$f(x) = 4^{x} + 2 \rightarrow f(x) = -4^{-x} + 2$$

The negative sign for 4 _____ the graph over a _____ line then the negative sign for x _____ the graph over a ____ line.

$$f(x) = 6 - 3^{-x} \rightarrow f(x) = -4 + 3^{-x}$$

The negative sign for 4 _____ the graph 10 units down then the positive sign for 3 the graph over a _____ line.

$$f(x) = 5^{-x+3} - 2 \rightarrow f(x) = 5^{-x-4} - 6$$

The negative sign for 4 _____ the graph 7 units to the _____ then the negative sign for 6 _____ the graph 4 units _____

$$f(x) = 7^{x+4} - 1 \rightarrow f(x) = 7^{x+1} + 5$$

The positive sign for 1 _____ the graph 3 units to the _____ then the positive 5 _____ the graph 6 units _____.

Foldable

Foldable

