4.1 Exponential Functions Warm-Up Write all you know about the following terms. Domain Intercept **Increasing Function** Range Slope **Decreasing Function** **Main Topic** **Exponential Functions and Their Graphs** List at least 3 acts of kindness that you can share with your community. ### Two individuals are planning to start the campaign. Fill out the table below. | No. of Days | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Х | |-------------|---|---|---|---|---|---|---|---| | No. of | | | | | | | | | | Individuals | | | | | | | | | | Exponential | | | | | | | | | | Expression | | | | | | | | | - What is the expected number of individuals participating in the campaign on the 4th day? - O How many days will it take for every individual in your city to participate in the campaign? ### **Properties of Exponential Functions** - Graph $f(x) = 2^x$. - o Identify the following features of the function. - Domain: - Range: - Asymptote: - x-intercept: - y-intercept: - Left End Behavior: - Right End Behavior: - Increasing or Decreasing: **Asymptote** An **asymptote** is a straight line where a graph is trying to approach but never touches it. For $f(x) = 2^{-x} - 5$, the asymptote is -5. - o Graph $f(x) = 2^{-x} + 3$. - Identify the following features of the function. - Domain: - Range: - Asymptote: - x-intercept: - y-intercept: - Left End Behavior: - Right End Behavior: - Increasing or Decreasing: Complete the tables with necessary information. | Domain and Range | | x and y intercepts | |------------------|-------------------|-----------------------------| | Asymptote | $f(x) = -2^x + 3$ | Left and Right End Behavior | | | | | # **Quick Math** What is the x-intercept and y-intercept of $f(x) = 5 - 4^x$? ### Transformations of Functions Write your observations when $f(x) = 2^x$ is changed to $$f(x) = 2^x - 5$$ $$f(x) = 2^{-x} + 5$$ $$f(x) = -2^x + 5$$ $$f(x) = 2^{x} - 5$$ $f(x) = 2^{-x} + 5$ $f(x) = -2^{x} + 5$ $f(x) = 2^{x-4} + 5$ ### Fill in the blank Word Bank: Translates, Reflects, Horizontal, Vertical, Left, Right, Down, Up $$f(x) = 4^{x} + 2 \rightarrow f(x) = -4^{-x} + 2$$ The negative sign for 4 _____ the graph over a _____ line then the negative sign for x _____ the graph over a ____ line. $$f(x) = 6 - 3^{-x} \rightarrow f(x) = -4 + 3^{-x}$$ The negative sign for 4 _____ the graph 10 units down then the positive sign for 3 the graph over a _____ line. $$f(x) = 5^{-x+3} - 2 \rightarrow f(x) = 5^{-x-4} - 6$$ The negative sign for 4 _____ the graph 7 units to the _____ then the negative sign for 6 _____ the graph 4 units _____ $$f(x) = 7^{x+4} - 1 \rightarrow f(x) = 7^{x+1} + 5$$ The positive sign for 1 _____ the graph 3 units to the _____ then the positive 5 _____ the graph 6 units _____. # Foldable Foldable